Como hemos visto, el método de Gauss transforma la matriz de coeficientes en una matriz triangular superior. El método de Gauss-Jordan continúa el proceso de transformación hasta obtener una matriz diagonal unitaria (aij=0 para cualquier ).
Veamos el método de Gauss-Jordan siguiendo con el ejemplo empleado en el apartado anterior. Aplicando el método de Gauss habíamos llegado a la siguiente ecuación:

Ahora seguiremos un procedimiento similar al empleado en el método de Gauss. Tomaremos como pivote el elemento a44=-3; multiplicamos la cuarta ecuación por y la restamos a la primera: 
Ahora tomamos como pivote el elemento a33=2, multiplicamos la tercera ecuación por y la restamos a la primera:
Repetimos la operación con la segunda fila:
Finalmente, tomamos como pivote a22=-4, multiplicamos la segunda ecuación por y la sumamos a la primera:
El sistema de ecuaciones anterior es, como hemos visto, fácil de resolver. Empleando la ecuación (46) obtenemos las soluciones:
3.0 X1 - 0.1 X2 - 0.2 X3 = 7.8500
0.1 X1 + 7.0 X2 - 0.3 X3 = - 19.3
0.3 X1 - 0.2 X2 + 10 X3 = 71.4000
Primero expresemos los coeficientes y el vector de términos independientes como una matriz aumentada.
Se normaliza el primer renglón dividiendo entre 3 para obtener:
El término X1 se puede eliminar del segundo renglón restando 0.1 veces el primero del segundo renglón. De una manera similar, restando 0.3 veces el primero del tercer renglón se elimina el término con X1 del tercer renglón.
En seguida, se normaliza el segundo renglón dividiendo entre 7.00333:
Reduciendo los términos en X2 de la primera y la tercera ecuación se obtiene:
El tercer renglón se normaliza dividiéndolo entre 10.010:
Finalmente, los términos con X3 se pueden reducir de la primera y segunda ecuación para obtener: 





No hay comentarios:
Publicar un comentario